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Abstract Two conjugated polymers containing benzodithiophene (BDT) unit and

the unit of thiophene or thieno[3,2-b]thiophene, P(BDT-T) and P(BDT-TT), were

synthesized by Pd-catalyzed Stille coupling method. The UV–Vis absorption,

thermal, and electrochemical properties of the two polymers were characterized.

Photovoltaic properties of the polymers were studied by using the polymers as

donor and PC70BM as acceptor with a weight ratio of polymer: PC70BM of 1:1.5.

The power conversion efficiencies of the PSC devices based on P(BDT-T) reached

2.05% with an open-circuit voltage of 0.75 V, a short-circuit current of

4.5 mA cm-2, and a fill factor of 0.61, under the illumination of AM1.5,

100 mW cm-2.
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Introduction

Polymer solar cells (PSCs) have attracted great interests in recent years, due to their

advantages of low-cost, light weight, easy fabrication, and large-area processability

[1–4]. The photoactive layer of the PSCs is composed of a blend film of conjugated

polymer as the electron donor and a soluble fullerene derivative as the electron

acceptor [5]. The most representative photoactive system is a blend of regioregular

poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester
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(PC60BM). After extensive optimization, the highest power conversion efficiencies

(PCE) of the PSCs based on P3HT/PC60BM has reached over 4% [6, 7].

The photovoltaic performance of the PSCs has been greatly improved in recent

2 years by developing new conjugated polymer donors [8–13] and new fullerene

derivative acceptors [14–16]. Among the conjugated polymer donor materials

developed in recent years, benzodithiophene (BDT)-based copolymers have drawn

great attention [8–11, 17–28]. Hou et al. [17] synthesized the BDT-based

copolymers with different alternating units, and effectively tuned the bandgaps

and energy levels of the copolymers. Subsequently, the copolymers of BDT and

thieno[3,4-b]thiophene demonstrated high PCE of 5–7% [8–11, 18, 19]. Recently,

the copolymers of BDT and thieno[3,4-c]pyrrole-4,6-dione (TPD) also showed high

photovoltaic performance [20–23]. The results indicate that the BDT unit is a

promising structural unit for the high efficiency conjugated polymer photovoltaic

materials. In addition, thieno[3,2-b]thiophene (TT) and thiophene-based polymers

often display high hole mobility and promising photovoltaic performance [29–32].

Stimulated by the good photovoltaic performance of the BDT-based copolymers

and the TT- and thiophene-based polymers, here we synthesized two copolymers of

BDT and thiophene, poly{4,8-di(3,7-dimethyloctaneoxy)benzo[1,2-b;3,4-b]dithio-

phene-alt-thiophene} (P(BDT-T)), and BDT and TT, poly{4,8-di(2-ethylhexyloxy)-

benzo[1,2-b;3,4-b]dithiophene-alt-3,6-dihexyl-thieno[3,2-b]thiophene} (P(BDT-TT)),
as shown in Scheme 1. The two polymers have good solubility in toluene,

chloroform, and THF. The PCE of the PSCs based on P(BDT-T) as donor and

PC70BM as acceptor reached 2.05% with Voc = 0.75 V, Jsc = 4.5 mA cm-2, and

FF = 0.61.

Experimental section

Materials

All of the chemicals were purchased from Aldrich and used as received, unless

otherwise stated. 1,5-bibromo-4,8-di(2-ethylhexyloxy)benzo[1,2-b:4,5-b0]dithioph-

ene [33–35], benzo[1,2-b:4,5-b0b0]dithiophene-4,8-dione [17], 2,5-dibromo-3,6-

dihexyl-thieno[3,2-b] thiophene [33–36], and 2,5-bis(trimethyltin)thiophene [37]
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Scheme 1 Molecular structures of the BDT-based polymers
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were synthesized according to the procedures reported in the literatures. The other

materials were common commercial level and used as received.

Measurements and characterization

1H NMR spectra were measured on a Bruker DMX-400 spectrometer. Chemical

shifts of the 1H NMR were reported in ppm relative to the singlet of CDCl3 at

7.26 ppm. Splitting patterns were designated as s (singlet), d (doublet), t (triplet),

m (multiplet), and br (broaden). Absorption spectra were taken on a Hitachi U-3010

UV–Vis spectrophotometer. Molecular weight of the polymers was measured by

GPC method and polystyrene was used as a standard. TGA measurement was

performed on a Perkin-Elmer TGA-7. The electrochemical cyclic voltammetry was

conducted on a Zahner IM6e Electrochemical Workstation with Pt disk, Pt plate,

and Ag/Ag? electrode as working electrode, counter electrode, and reference

electrode, respectively, in a 0.1 mol L-1 tetrabutylammonium hexafluorophosphate

(Bu4NPF6) acetonitrile solution. Polymer thin films were formed by dropcasting

1 lL of the polymer solutions in chloroform (analytical reagent, 1 mg mL-1) onto

the working electrode, and then dried in the air.

Fabrication of polymer solar cells

The PSCs were fabricated in the configuration of the traditional sandwich structure

with ITO positive electrode and metal negative electrode. The ITO glass was

cleaned by sequential ultrasonic treatment in detergent, deionized water, acetone,

and isopropanol, and then treated in an ultraviolet–ozone chamber (Ultraviolet

Ozone Cleaner, Jelight Company, USA) for 20 min. A thin layer of poly(3,4-

ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) (Baytron, PVP

4083, Germany) was spin-coated on the ITO glass and dried in vacuum oven at

150 �C for 15 min. The thickness of the PEDOT:PSS layer was ca. 70 nm.

Subsequently, the active layer was prepared by spin-coating the o-dichlorobenzene

solution of polymers P(BDT-T) or P(BDT-TT):PC70BM (1:1.5, w/w) with the

polymer concentration of 20 mg mL-1 on the top of the PEDOT:PSS layer. The

devices were completed by evaporating Ca/Al metal electrodes defined by mask.

The Ca (10 nm) capped with Al (80 nm) was thermally deposited on the active layer

at a pressure of 3910-5 Pa, The active area of a device was 4 mm2. The current–

voltage (I–V) measurement of the PSCs was conducted on a computer-controlled

Keithley 236 source measure unit. A Xenon lamp with AM1.5 filter was used as a

white-light source and the optical power was 100 mW cm-2. All the measurements

were controlled by a computer system, and performed under ambient atmosphere at

room temperature.

Synthesis of monomers and polymers

The synthetic routes of the monomers and polymers are shown in Schemes 2 and 3.

The detailed synthetic processes are as follows.
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4,8-Di(3,7-dimethyloctaneoxy)benzo[1,2-b;3,4-b]dithiophene (2)

Compound 1 (17.6 g, 80 mmol), zinc powder (10.92 g, 168 mmol), and 200 mL of

water were put into a 500 mL flask; then, 48 g of NaOH was added into the mixture.

The mixture was well stirred and heated to reflux for 3 h. Then, 1-bromo-3,7-

dimethyloctane (53.04 g, 240 mmol) and a catalytic amount of tetrabutylammo-

nium bromide were added into the flask. After being refluxed for 6 h, the reactant

was poured into cold water and extracted by diethyl ether for three times. The ether

layer was dried over anhydrous MgSO4. After removing solvent, the crude product

was re-adsorbed in silica gel and purified by silica gel chromatography using hexane

as eluent. 24.9 g of Compound 2 (50 mmol, yield 62.5%) was obtained as light

yellow oil. 1H NMR (CDCl3, 400 MHz), d(ppm) = 7.45 (s, 2H), 7.35 (s, 2H),
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4.37 (t, 4H), 1.93 (quintuple, 4H), 1.69 (m, 4H), 1.56–1.29 (m, 18H), 0.87 (t, 12H).

Elemental analysis: Calculated for C30H46O2S2: C 71.71, H 9.16; found: C 71.46,

H 9.07.

2,6-Dibromo-4,8-di(3,7-dimethyloctaneoxy)benzo[1,2-b;3,4-b]dithiophene (3)

Compound 2 (20.08 g, 40 mmol) was dissolved into 500 mL of methylene chloride

in a 1,000 mL flask. Bromine (13.44 g, 84 mmol) was dissolved into 100 mL of

methylene chloride in a funnel and slowly dropped into the flask under an ice-water

bath, and then the reactant was stirred for 20 h at room temperature. After removing

solvent, the crude product was re-adsorbed in silica gel and purified by silica gel

chromatography using hexane as eluent. 21.12 g of Compound 3 (32 mmol, yield

80%) was obtained as a light yellow oil. 1H NMR (CDCl3, 400 MHz),

d(ppm) = 7.43 (s, 2H), 4.17 (t, 4H), 1.88 (m,4H), 1.55–1.18 (m, 28H), 0.89 (t,

6H). Elemental analysis: Calculated for C30H44Br2O2S2: C 54.55, H 6.67; found:

C 52.40, H 6.45.

2,5-Di(trimethyltin)-3,6-dihexyl-thieno[3,2-b]thiophene (5)

Compound 4 (9.36 g, 20 mmol) and 100 mL of THF were added into a flask under

an inert atmosphere. The solution was cooled down to -78 �C by a liquid nitrogen–

acetone bath, and 17.60 mL of n-butyllithium (44 mmol, 2.5 M in n-hexane) was

added dropwise. After being stirred at -78 �C for 3 h, a great deal of white solid

precipitate appeared in the flask. Then, 44 mmol of trimethyltin chloride was added

quickly in one portion. The cooling bath was removed, and the reactant was stirred

at ambient temperature for 12 h. Then, it was poured into 500 mL of cool water and

extracted by ether three times. The organic layer was washed by water two times,

and then dried by anhydrous MgSO4. After removing solvent under vacuum, the

residue was recrystallized by ethyl alcohol two times. 10.11 g of Compound 5
(16 mmol, yield 80%) was obtained as colorless needle crystal. 1H NMR (CDCl3,

400 MHz), d(ppm) = 2.70 (t, 4H), 1.72 (m, 4H), 1.38–1.27 (m, 12H), 0.89 (t, 6H).

Elemental analysis: Calculated for C24H44S2Sn2: C 45.57, H 6.96%; found: C 45.32,

H 6.63.

Poly{4,8-di(3,7-dimethyloctaneoxy)benzo[1,2-b;3,4-b]dithiophene-alt-thiophene}
P(BDT-T)

Under nitrogen, 1.0 mmol of the monomer 3 was dissolved in 15 mL dried toluene,

2,5-bis(trimethyltin)thiophene (1 mmol) was added to the mixture. The solution was

flushed with argon for 10 min, and then 25 mg of Pd(PPh3)4 were added. After

another flushing with argon for 20 min, the reactant was heated to reflux for 12 h. The

reaction solution was cooled to room temperature, the reaction mixture was added

dropwise to 200 mL methanol, and then filtered through a Soxhlet thimble, which was

then subjected to Soxhlet extraction with methanol, hexane, and chloroform. Polymer

was recovered from the chloroform fraction by rotary evaporation as solid. The

polymer was purified with bio-beads S-1 column chromatography eluted with THF,
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the solvent was removed in vacuum, and the solid was dried under vacuum for 1 day

to get P(BDT-T). The yield of the polymerization reaction was about 45%. GPC:

Mw = 13.1 kg mol-1, Mn = 6.7 kg mol-1, Mw/Mn = 1.96. 1H NMR (400 MHz,

CDCl3), d(ppm) = 7.52–6.95 (br, 4H), 4.27(m, 4H), 1.99–0.67 (m, 42H). Elemental

analysis for (C34H46S3O2)n. Calculated: C 70.10, H 7.90, S 16.49; found: C 71.07,

H 7.95, S 17.08.

Poly{4,8-di(2-ethylhexyloxy)benzo[1,2-b;3,4-b]dithiophene-alt-3,6-dihexyl-
thieno[3,2-b]thiophene} P(BDT-TT)

The synthesis process of P(BDT-TT) is similar with that in the synthesis of P(BDT-
T), except using 2,5-di(trimethyltin)-3,6-dihexyl-thieno[3,2-b]thiophene instead of

thiophene, and 1,5-bibromo-4,8-di(2-ethylhexyloxy)benzo [1,2-b:4,5-b0]dithiophene

instead of 2,6-dibromo-4,8-di(3,7-dimethyloctaneoxy) benzo[1,2-b;3,4-b]dithioph-

ene (Yield: 42%). GPC: Mw = 18.3 kg mol-1, Mn = 6.9 kg mol-1, Mw/Mn =

2.65. 1H NMR (400 MHz, CDCl3), d(ppm) = 7.55–7.01 (br, 2H), 4.25(m, 4H),

3.05–2.74(t, 4H), 1.87–0.91 (m, 52H). Elemental analysis for (C44H62S4O2)n.

Calculated: C 70.40, H 8.27, S 17.07; found: C 70.97, H 8.95, S 16.68.

Results and discussion

Synthesis and structural characterization of the polymers

The general synthetic strategy for the monomers and polymers is outlined in

Schemes 2 and 3, respectively. Monomer 1 was prepared according to reported

literature method [17]. Monomer 1 was reduced by zinc dust in aqueous sodium

hydroxide solution for 3 h. Subsequently, 1-bromo-3,7-dimethyloctane and a

catalytic amount of tetrabutylammonium bromide were added. After being refluxed

for 12 h, monomer 2 was obtained with a yield of 62.5%. Bromination of 2 using

Br2 provided monomer 3 in 80% yield. Monomer 5 was synthesized with a similar

method reported in the literature [38]. By Stille coupling reaction in toluene using

Pd(PPh3)4 as catalyst at 120 �C for 12 h, the polymers P(BDT-T) and P(BDT-TT)
were obtained with a yield of 40–45%. All the polymers are soluble in chloroform,

toluene, and THF at room temperature, and can readily be processed from solution.

The weight-average molecular weights (Mw) of P(BDT-T) and P(BDT-TT) are

13.1 and 18.3 K, respectively. Meanwhile, the polydispersity index (PDI) of the

polymers was estimated to be 1.96 and 2.65 for P(BDT-T) and P(BDT-TT),
respectively, using gel permeation chromatography (GPC) against polystyrene

standards.

Thermal analysis

Thermal stability of the polymers was investigated with thermogravimetric analysis

(TGA), as shown in Fig. 1. The TGA reveals that, in the inert nitrogen atmosphere,

the onset points of the weight loss with 5% weight-loss temperature (Td) of
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P(BDT-T) and P(BDT-TT) are 302 and 305 �C, respectively. The results indicate

that the two polymers have good thermal stability, which is stable enough for the

application in polymer optoelectronic devices.

Optical properties of the polymers

Figure 2 shows the UV–Vis absorption spectra of the polymers in chloroform

solutions and films spin-coated on quartz substrates. The absorption of P(BDT-T) in

chloroform solutions (see Fig. 2a) agrees with that reported by Hou et al. [17] for

the similar polymers. It is noted that P(BDT-T) exhibits an absorption maxima at

500 nm, while P(BDT-TT) displays a blue-shifted absorption with the absorption

maxima at 478 nm. Figure 2b shows the absorption of the polymer films.
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The absorption peaks of the polymer films are more or less red-shifted in

comparison with those of their corresponding solutions, which results from the

intermolecular interaction of the conjugated polymers in the solid state. Among the

two polymers, the absorption maximum of P(BDT-TT) film is red-shifted by 28 nm

compared with that of its solution, which indicates that there is strong intermo-

lecular interactions in the P(BDT-TT) films. The detailed absorption data, including

absorption maximum wavelength of solutions and films, the absorption edge (onset

wavelength of the absorption peak, konset) of the polymer films, and the optical

bandgap deduced from the absorption edges, are summarized in Table 1.

Electrochemical properties

The electrochemical cyclic voltammetry has been widely used to measure the

lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular

orbital (HOMO) of the conjugated polymers [39–41]. And the LUMO and HOMO

energy levels are key parameters for the application of the conjugated polymers in

PSCs. Therefore, we measured the LUMO and HOMO energy levels of the two

copolymers by cyclic voltammetry.

Figure 3 shows the cyclic voltammograms (CVs) of the polymer films on Pt

electrode in a 0.1 mol/L Bu4NPF6–acetonitrile solution. From the onset oxidation

potentials (uox) and the onset reduction potentials (ured) of the polymers, the

HOMO and LUMO energy levels as well as the energy gap (Eg
EC) of the polymers

were calculated according to the equations [40, 41]:

EHOMO ¼ �e ðuox þ 4:71Þ eVð Þ;
ELUMO ¼ �e ðured þ 4:71Þ eVð Þ;

EEC
g ¼ e ðuox � uredÞ eVð Þ

where the units of uox and ured are V versus Ag/Ag?. The results of the electro-

chemical measurements are listed in Table 1. It can be seen that the HOMO energy

level of P(BDT-T) has a lower value of -5.07 eV relative to that of P(BDT-TT)

Table 1 Optical and electrochemical properties of the polymers

Polymers UV–Vis absorption spectra Cyclic voltammetry

Solutiona Filmb p-doping n-doping

kmax

(nm)

kmax

(nm)

konset

(nm)

Eg
opt

(eV)c
uox/HOMO

(V)/(eV)

ured /LUMO

(V)/(eV)

Eg
EC

(eV)

P(BDT-T) 500 506 587 2.11 0.36/-5.07 -1.98/-2.73 2.34

P(BDT-TT) 472 500 604 2.05 0.34/-5.05 -1.91/-2.80 2.25

H6 [17] 2.06 0.33/-5.05 -2.07/-2.69 2.36

a Measured in chloroform solution
b Cast from chloroform solution
c Bandgap estimated from the onset wavelength (kedge) of the optical absorption: Eg

opt = 1240/kedge
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(-5.05 eV). Correspondingly, the LUMO energy level of P(BDT-T) and P(BDT-
TT) are -2.73 and -2.80 eV, respectively. The electrochemical bandgaps are 2.34

and 2.25 eV for P(BDT-T) and P(BDT-TT), respectively.

In order to make a clear comparison, properties of a similar BDT-based polymer

H6 (with different alkoxyl side chains on BDT unit) reported in Ref [17] were also

listed in Table 1. The bandgap as well as the molecular energy level of P(BDT-T) is

similar with that of H6, the results indicated that different alkoxyl chains on the

BDT unit influence the energy bandgap of polymers very little. The electrochemical

bandgap of P(BDT-T) and P(BDT-TT) is a little higher than that of the optical

bandgap aforementioned, which is a common phenomenon for the conjugated

polymers [42, 43].

Photovoltaic properties

To explore the photovoltaic properties of the two copolymers, the bulk heterojunc-

tion PSCs were fabricated with a structure of ITO/PEDOT:PSS/polymer:PC70BM

(1:1.5 w/w)/Ca/Al, where the two BDT-based polymers was used as donor and the

fullerene derivative PC70BM was used as acceptor. The polymer active layers were

spin-coated from a dichlorobenzene solution. Figure 4 shows the J–V curves of the

devices, and Table 2 lists the corresponding Voc, Jsc, FF, and PCE of the devices

under the illumination of AM 1.5G, 100 mW cm-2. The two polymers have the

similar Voc which is from the deep-lying HOMO level. PCE of P(BDT-T) reached

2.05%,which is better than that of P(BDT-TT) (0.54%). The difference of PCEs

results from the different Jsc and FF of the polymers as shown in the J–V curves. In

comparison with the photovoltaic performance (Voc = 0.75 V, Jsc = 3.78 mA/cm2,
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FF = 0.56, and PCE = 1.60%) of H6 with linear alkyl chains on BDT unit [17],

P(BDT-T) with the branched alkylside chains shows higher power conversion

efficiency with higher Jsc and FF values.
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Fig. 4 I–V curves of the PSCs based on the BDT-based polymers under AM 1.5 illumination
(100 mW cm-2)

Table 2 Photovoltaic parameters of the PSCs based on copolymer/PC70BM (1:1.5, w/w)

Polymers Voc (V) Jsc (mA cm-2) FF PCE (%) Thickness (nm)

P(BDT-T) 0.750 4.50 0.608 2.05 63

P(BDT-TT) 0.730 2.22 0.330 0.54 70
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Fig. 5 EQE of PSCs based on BDT-containing polymers with PC70BM
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Figure 5 shows the external quantum efficiency (EQE) of the optimized PSC

device with the BDT-based polymers: PC70BM weight ratio of 1:1.5 and an active

layer thickness of 67 and 60 nm, respectively. The EQE values agree with the short-

circuit current very well for the two devices. Comparing the EQE of the devices in

Fig. 5 and the absorption of the polymers in Fig. 2, we can see that PC70BM

absorption contributes substantially to the photocurrent in the wavelength range

from 350 to 400 nm.

Conclusion

Two BDT-based conjugated polymers, P(BDT-T) and P(BDT-TT), were designed

and synthesized by Pd-catalyzed Stille coupling method. The PSC device based on

a blend of P(BDT-T):PC70BM gives a PCE of 2.05% with Voc = 0.75 V,

Jsc = 4.50 mA cm-2 and FF = 0.608 under the illumination of AM 1.5G,

100 mW cm-2. The EQE values of the PSCs based on P(BDT-T):PC70BM blends

extend to above 35%. These results indicate that the copolymer of BDT unit and

thiophene is a promising conjugated polymer donor material for the application in

PSCs.
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